Penny Lewis [ 3 JUL 2015 | Sleep Engineering ] How To Improve Your Life by Manipulating Your Sleep. For a sleep scientist, I actually don’t sleep very well. Any little chink of light in the room and I’m awake all night. My eye mask is just as important to me as my laptop. I take sleep very seriously and I’m hoping this talk will make some of you feel the same about it.

What I’m NOT going do is preach to you about how you should get more sleep. We all know that. We all know we live in a sleep-deprived society.

Instead I’m going to talk about something which I think is much more interesting. That is, how can we manipulate the sleep that we DO get, in order to get the most out of it — in order to improve our quality of life.

I call this the new science Sleep Engineering. Let’s start from the beginning.

As humans, we spend roughly a third of our lives asleep. Eight hours a day. That’s more time than we spend doing anything else. That’s a huge amount of time and just the pure fact of that time-investment suggests that sleep must be doing something incredibly important. But what is it?

It turns out that sleep is all about the brain.

Contrary to popular opinion, the brain doesn’t just switch off when we go to sleep. Instead it goes through a series highly specific different types of activities. We can measure these by putting electrodes all over the scalp like this:

This, by the way, is to sleep scientist’s idea of a Selfie.

With these electrodes we can measure the electrical activity of the brain and during wake it look something like this: just a wiggly line, with time going from left to right.

What that tells us is the brain is active, and that the activity is not particularly synchronized. Things aren’t summing up in any particular way.

But as we fall asleep, the pattern changes a little bit. It slows down a little bit and the amplitude of those brain waves gets a little bit higher, showing a bit more synchrony.

We also start to see occasional bursts of  high-frequency activity that we call sleep spindles . These spindles don’t occur across the whole brain, they just occur in localized areas at any one time.

I’m going to come back to them, several times during the talk, so try and remember what those look like.

As we go deeper into sleep, the activity slows down still more, and we start to see these high-amplitude slow oscillations that we call Slow Waves. This shows a high degree of synchrony, across the cortex, in the firing across the cortex. Many neurons are firing together and pausing and firing together.

It’s very different than the kind of activity that we see during Wake.

If we go still deeper, we go into a sleep stage that I’m sure you’ve all heard about — Rapid Eye Movement sleep. This is famous for the way the eyes dart around under closed lids. It actually looks very similar to the brain activity that we see during Wake.

Probably because all the dreaming that’s happening — not much cortical synchrony there.

So why do we do this? Why do our brains spend a third of our life going through these highly precise different types of activity in a cycle from one stage to another?

There are two main answers to this:

One of them relates to sleep’s role in maintaining a healthy brain and the other to its role in  learning and memory .

I’m gonna start by talking about the healthy brain.

Sleep plays a sort of housekeeping role. It cleans our brains. It helps us to remove toxins and some of the most interesting studies of this have shown that  the spaces between between brain cells expand during that slow wave sleep  that I showed you  by as much as 60 percent . and this allows cerebral spinal fluid, the fluid in the brain,  to flush through and efficiently clear away toxins  that have built up during wake.

One of these toxins, that’s particularly interesting, is something you might have heard about  Beta Ameloid . This is a protein that can build up not only during wake but actually  across a lifetime  and build ups of Beta Ameloid are  linked to  formation of plaques in the brain that I are predictive of  cognitive impairment, particularly problems with memory .

If it gets bad its  also linked to Dementia and Alzheimer’s disease .

Beta Ameloid is also linked to  cell death in the brain  and a gradual degeneration of some parts of the cortex that can happen with aging again to Dementia and Alzheimer’s Disease.

So it’s obvious that it’s important for us to flush this out of the brain if we possibly can.

Interestingly, as we age our sleep patterns also change.

As sleep becomes more fragmented, those high-amplitude slow oscillations I told you about gradually stretch and flatten out. After the age of 65 it’s quite common not to get anymore Slow Wave sleep at all

 Problem .

Furthermore, this gradual decline in Slow-Wave, across the life cycle, has been shown to predict the extent to which the cortex actually  atrophies and shrinks 

Some of the prefrontal regions of the cortex, that shrinkage is predicted by the decrease in slow wave sleep. Wouldn’t it be great if there was a way that we could maintain those Slow Waves as we got older, and not have that decline.

This is where we come to sleep engineering

Very recent research has suggested a way that we can do this.

If we play sounds to people, just click — simple click sounds, while they’re in slow wave sleep — if we place those sounds near the peaks of those high-amplitude slow oscillations it turns out that it can enhance them.

Let me show you what this looks like.

The clicks occurring, just near the peak, boost the amplitude — and they’ve also been  shown to improve memory the next day . That works very well in healthy young people and I’ve got several quite sleep-deprived graduate students who are working hard on taking this to the older population. Right now our results are very promising, so we’re hoping that, in not too many years, we might be able to offer a preventative treatment that could help people to maintain their Slow Wave sleep as they get older and possibly might slow down some of this decline, cortical and cognitive, that happens.

So let me move on now, to talk about learning and memory.

In his famous book One Hundred Years of Solitude, Gabriel Garcia Marquez wrote about a plague of insomnia that swept across a land. People just couldn’t sleep and at first they didn’t mind that at all. But eventually negative symptoms started to manifest and these symptoms were the fact that they lost their memories.

They couldn’t learn new things and they started to forget what objects were. They had to cover things with notes saying things like “this is a cow, it gives milk, pull here”.

Given this book was published in 1967, when we knew almost nothing about sleep’s role in memory, it’s really quite remarkable that Garcia Marquez had insight into this. But subsequent research has shown that he was absolutely right.  Sleep is very important for forming new memories  and also integrating those memories with what we know already. Also strengthening memories.

Let me give you an example of this. I want you all to hold up your left hand and we’re numbering your fingers from 1 pinky to 4 index finger, and I want you to press your fingers on your thumb in this pattern: 4, 1, 3, 2, 4.

4, 1, 3, 2, 4.

Okay I think you’ve all got it.

This was the task that was used in the experiment I’m going to tell you about.

People were asked to press 41324 sequences like this, as quickly as they could, for about two hours. [ Groan ] They were pretty bored, but they also stop getting faster and that’s why experimenters wanted.

When they got to that point, they were given a test — in 30 seconds, press as many 41324 sequences as you can.

This all happened at around 10 a.m. People did just fine. They pressed about 21 sequences, and then they were told to go away and come back 12 hours later and do it again.

Their performance didn’t change much.

Here’s the interesting bit: they went away a second time and they slept overnight and they came back and did this a third time. And now their  performance improved dramatically . About 20 percent improvement.

Furthermore, the extent to which they improved was predicted by the Sleep Spindles — remember those high-frequency oscillations I told you about that occurred over the bit of the brain, the motor cortex, that’s particular associated with hand movement?

This is the kind of data that suggested that sleep is doing something really important for memory. It’s helping us to strengthen up memories. But it turns out it doesn’t just help us to strengthen memory,  sleep also helps us to integrate memories  and to  make connections between things that we might not otherwise have realized were connected .

This is critical for solving some kinds of problems.

And it’s critical for creativity and forms innovation.

I bet everyone here, if you think about it, has experienced this: You’ve woken up in the morning with the solution to something that you hadn’t been able to solve the day before. In fact, history is peppered with examples of this. This Sonata by Tartini is an example. this was inspired by a dream he had of the devil playing violin on his bed.

A more scientific example comes from Friedrich Kekulé, who won the Nobel Prize for discovering the chemical structure of Benzene. It’s cyclical rather than acyclical. More linear. Again, this was inspired by a dream in which he saw a serpent biting its own tail.

Interestingly,  this type of associative problem-solving is linked to REM sleep , rather than spindles or Slow Wave sleep.

What you might be wondering is, what’s going on and sleep? How does sleep allow us to do these things?

The answer seems to be linked to the fact that  memories are spontaneously replayed during sleep . So the neural activity associated with something that you’ve done replays spontaneously when you’re asleep.

Let me explain to you an experiment which shows this.

This is a maze, which participants were asked to navigate in a video game. While they were doing this, the brain activity was measured and — unsurprisingly — the hippocampus, amongst other areas (which is associated with spatial memory and navigation), was active while they did this.

Then the same participants stayed in the scanner and were asked to sleep.

During Slow-Wave sleep, those high-amplitude slow oscillations I told you about, the same structure was active again.  The extent to which it was active actually predicted how much better they got at navigating around the town  when they were tested again the next day.

Furthermore, the sleep spindles that I told you about are thought to be a marker of this type a  reactivation . Not only is this experiment a nice example of how reactivation happens during sleep, and is linked to strengthening memories, but also that finger tapping experiment I told you about.

This explains why the spindles over the motor cortex are greater because people were probably reactivating memories as well

What has this got to do with Sleep Engineering?

What’s exciting about it is, now that we know reactivation during sleep is important for strengthening memories,  we’ve also learned how to manipulate it .

We don’t have to sit and wait for reactivation to happen spontaneously. Instead we can control it. Let me show you how this works

If I show you a cat in this part of the screen and a dog in that part of the screen, and then tonight when you’re asleep and you enter Slow Wave sleep, I’m watching and I play [meow] — then the next day, when I test you, you’ll be much more likely to remember where the cat was on that screen than the dog.

That’s because that sound cue will have triggered reactivation of the memory and strengthened up that memory.

This doesn’t end with just simply strengthening memories. Tt’s been shown that, if we trigger some kinds of problems while people are asleep, they can then be better at solving those problems the next day. So reactivation can also help with association and potentially with creativity and innovation as well.

But, as we all know, we don’t always want to remember everything. I’m sure some of you have had a traumatic experience at some point in your life. You may have been mugged, you may have been in a car crash, there may have been other things that happened to you that you’d really — you might not mind remembering the details — but you really don’t want to be as upset about it every time you remember it, as you were right after it happened.

We’re interested in this and how reactivation during sleep might help with it.

It turns out that if we show people upsetting pictures or videos, and then play the associated sounds when they’re in Slow-Wave sleep — then ask them the next day how upsetting that was — the things that have been replayed to them during Slow-Wave sleep will be less upsetting.

It looks as though triggering  replay of memories can actually help to disassociate the emotional response  from them as well.

We live in a time when we’re hyper-aware of our bodies. We’re all very aware how important exercise is and how important diet is. We have gadgets to measure every calorie that we take in and every calorie that we expend. We even have gadget to measure our sleep.

But I’d like to finish here by suggesting that  we could be taking this to the next level .

Instead of just measuring our sleep, we could be using the information that we now have about sleep to manipulate it in order to enhance things like reducing aging, improving aspects of our memory, enhancing our creativity and also potentially controlling aspect of our emotional responses.

As a sleep scientist, my hope is that in not too many years when your boss walks into your office and gives you a very difficult problem to work on it, you’ll feel like the most appropriate response to make, to show her you’re taking this seriously, is to pull out a pillow and tell her you’ll sleep on it.

Sleep Engineering
Tagged on:

Leave a Reply

Your email address will not be published.